论文标题
医学图像分析中所有网络体系结构的一项超确定器
One Hyper-Initializer for All Network Architectures in Medical Image Analysis
论文作者
论文摘要
预训练对于深度学习模型的表现至关重要,尤其是在有限的培训数据的医学图像分析任务中。但是,现有的预训练方法是不灵活的,因为其他网络体系结构不能重复使用一个模型的预训练权重。在本文中,我们提出了一个体系结构 - Irrelevant Hyper Initializer,该器只能在一次预训练之后就可以很好地初始化任何给定的网络体系结构。提出的初始器是一个超网络,将下游体系结构作为输入图,并输出相应体系结构的初始化参数。我们通过多种医学成像方式,尤其是在数据限制的领域中,通过广泛的实验结果来展示高档化器的有效性和效率。此外,我们证明,可以将所提出的算法重复使用,以作为同一模态的任何下游体系结构和任务(分类和分割)的有利的插件初始化器。
Pre-training is essential to deep learning model performance, especially in medical image analysis tasks where limited training data are available. However, existing pre-training methods are inflexible as the pre-trained weights of one model cannot be reused by other network architectures. In this paper, we propose an architecture-irrelevant hyper-initializer, which can initialize any given network architecture well after being pre-trained for only once. The proposed initializer is a hypernetwork which takes a downstream architecture as input graphs and outputs the initialization parameters of the respective architecture. We show the effectiveness and efficiency of the hyper-initializer through extensive experimental results on multiple medical imaging modalities, especially in data-limited fields. Moreover, we prove that the proposed algorithm can be reused as a favorable plug-and-play initializer for any downstream architecture and task (both classification and segmentation) of the same modality.