论文标题

散布的重力和大规模的中微子具有固有的形状比对

Disentangling Modified Gravity and Massive Neutrinos with Intrinsic Shape Alignments of Massive Halos

论文作者

Lee, Jounghun, Ryu, Suho, Baldi, Marco

论文摘要

我们基于组/群集大小暗物质光环的固有形状比对,介绍两个新的诊断,以使$ f(r)$重力的效果与大量中微子的效果相关。使用来自一系列{\小尘土}的快照数据 - {pathfinder} $ n $ - Planck $λ$ CDM宇宙学的模拟和三个具有大量中微子($ν$)的重力模型的三个$λ$ CDM宇宙学和三个$ f(r)$ f(r)$ f(r)$,我们首先确定位置序列量的临时距离和临时量之间的临时量的临时量,并确定较小的平衡量的范围和群体量的范围。字段。事实证明,在数值上获得的结果非常吻合,这与沿宇宙网络的各向异性合并诱导光环形状比对的假设得出的分析公式非常吻合。发现几种标准诊断方法无法区分的四个宇宙学可以产生表征分析公式的单个参数的最佳拟合值。我们还在数字上确定了邻居组/群集光环的形状方向之间的空间互相关,并发现它们与以两个参数为特征的拟合公式达成了良好的协议,其最佳拟合值在四个模型之间有很大差异。我们还讨论了这些新诊断的局限性和注意事项,这些诊断必须克服实际观察数据的应用。

We present two new diagnostics based on the intrinsic shape alignments of group/cluster size dark matter halos to disentangle the effect of $f(R)$ gravity from that of massive neutrinos. Using the snapshot data from a series of the {\small DUSTGRAIN}-{pathfinder} $N$-body simulations for the Planck $Λ$CDM cosmology and three $f(R)$ gravity models with massive neutrinos ($ν$), we first determine the probability density functions of the alignment angles between the shape orientations of massive halos and the minor principal axes of the local tidal fields. The numerically obtained results turn out to agree very well with the analytic formula derived under the assumption that the anisotropic merging along the cosmic web induces the halo shape alignments. The four cosmologies, which several standard diagnostics failed to discriminate, are found to yield significantly different best-fit values of the single parameter that characterizes the analytic formula. We also numerically determine the spatial cross-correlations between the shape orientations of neighbor group/cluster halos, and find them to be in good agreements with a fitting formula characterized by two parameters, whose best-fit values are found to substantially differ among the four models. We also discuss the limitations and caveats of these new diagnostics that must be overcome for the application to real observational data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源