论文标题
单词嵌入中的性别偏见:频率,语法和语义的全面分析
Gender Bias in Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics
论文作者
论文摘要
语言语料库中的统计规律将众所周知的社会偏见编码为单词嵌入。在这里,我们专注于性别,以全面分析在互联网语料库中训练的广泛使用的静态静态英语单词嵌入式(Glove 2014,FastText 2017)。使用单类单词嵌入关联测试,我们证明了性别偏见的广泛流行,这些偏见也显示出:(1)与男性与女性相关的单词频率; (b)与性别相关的单词中的言论部分; (c)与性别相关的单词中的语义类别; (d)性别相关的单词中的价,唤醒和优势。 首先,就单词频率而言:我们发现,在词汇量中的1,000个最常见的单词中,有77%的人与男性相比更重要,这是在英语世界的日常语言中直接证明男性默认的证据。其次,转向言论的部分:顶级男性相关的单词通常是动词(例如,战斗,击败),而顶级女性相关的单词通常是形容词和副词(例如,奉献,情感上)。嵌入中的性别偏见也渗透到言论部分。第三,对于语义类别:自下而上,对与每个性别相关的前1000个单词的群集分析。与男性相关的顶级概念包括大技术,工程,宗教,体育和暴力的角色和领域;相比之下,顶级女性相关的概念较少关注角色,包括女性特定的诽谤和性内容以及外观和厨房用语。第四,使用〜20,000个单词词典的人类评级,唤醒和主导地位,我们发现与男性相关的单词在唤醒和优势上较高,而与女性相关的单词在价上更高。
The statistical regularities in language corpora encode well-known social biases into word embeddings. Here, we focus on gender to provide a comprehensive analysis of group-based biases in widely-used static English word embeddings trained on internet corpora (GloVe 2014, fastText 2017). Using the Single-Category Word Embedding Association Test, we demonstrate the widespread prevalence of gender biases that also show differences in: (1) frequencies of words associated with men versus women; (b) part-of-speech tags in gender-associated words; (c) semantic categories in gender-associated words; and (d) valence, arousal, and dominance in gender-associated words. First, in terms of word frequency: we find that, of the 1,000 most frequent words in the vocabulary, 77% are more associated with men than women, providing direct evidence of a masculine default in the everyday language of the English-speaking world. Second, turning to parts-of-speech: the top male-associated words are typically verbs (e.g., fight, overpower) while the top female-associated words are typically adjectives and adverbs (e.g., giving, emotionally). Gender biases in embeddings also permeate parts-of-speech. Third, for semantic categories: bottom-up, cluster analyses of the top 1,000 words associated with each gender. The top male-associated concepts include roles and domains of big tech, engineering, religion, sports, and violence; in contrast, the top female-associated concepts are less focused on roles, including, instead, female-specific slurs and sexual content, as well as appearance and kitchen terms. Fourth, using human ratings of word valence, arousal, and dominance from a ~20,000 word lexicon, we find that male-associated words are higher on arousal and dominance, while female-associated words are higher on valence.