论文标题

Neuro-NAV:神经性增强学习的图书馆

Neuro-Nav: A Library for Neurally-Plausible Reinforcement Learning

论文作者

Juliani, Arthur, Barnett, Samuel, Davis, Brandon, Sereno, Margaret, Momennejad, Ida

论文摘要

在这项工作中,我们提出了一个神经NAV,这是一个开源的神经合理增强学习(RL)的开源库。 RL是研究生物生物中决策,学习和导航的最常见建模框架之一。在利用RL时,认知科学家经常手工环境和代理来满足其特定研究的需求。另一方面,人工智能研究人员经常难以找到用于神经和生物学上合理的代表和行为的基准(例如,在决策或导航中)。为了简化透明度和可重复性的两个领域的过程,Neuro-NAV提供了来自啮齿动物和人类中规范行为和神经研究的一组标准化环境和RL算法。我们证明该工具包从认知科学和RL文献中的许多研究中复制了相关发现。我们还描述了可以通过新颖的算法(包括深RL)和环境来扩展库的方式,以满足该领域的未来研究需求。

In this work we propose Neuro-Nav, an open-source library for neurally plausible reinforcement learning (RL). RL is among the most common modeling frameworks for studying decision making, learning, and navigation in biological organisms. In utilizing RL, cognitive scientists often handcraft environments and agents to meet the needs of their particular studies. On the other hand, artificial intelligence researchers often struggle to find benchmarks for neurally and biologically plausible representation and behavior (e.g., in decision making or navigation). In order to streamline this process across both fields with transparency and reproducibility, Neuro-Nav offers a set of standardized environments and RL algorithms drawn from canonical behavioral and neural studies in rodents and humans. We demonstrate that the toolkit replicates relevant findings from a number of studies across both cognitive science and RL literatures. We furthermore describe ways in which the library can be extended with novel algorithms (including deep RL) and environments to address future research needs of the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源