论文标题
正常四分之一表面III的奇异性(char = 2,无源)
Singularities of normal quartic surfaces III (char=2, non-supersingular)
论文作者
论文摘要
我们表明,如果$ x $的最小分辨率不是超级k3表面,那么在代数封闭的特征2 $ k $上定义的最大数量的奇异点$ x \ subset \ subset \ mathbb {p}^3_k $最多是12个特征2的$ k $。我们还提供了一个明确的例子,在任何特征上都有效。
We show that the maximal number of singular points of a normal quartic surface $X \subset \mathbb{P}^3_K$ defined over an algebraically closed field $K$ of characteristic 2 is at most 12, if the minimal resolution of $X$ is not a supersingular K3 surface. We also provide a family of explicit examples, valid in any characteristic.