论文标题

用于多元宇宙的公理方法

An axiomatic approach to the multiverse of sets

论文作者

Rhea, Alec

论文摘要

集合理论中的最新工作表明,正如J. Hamkins在[HAM11]中提出的那样,“集合”的“集合”的概念有许多不同的概念。在本文中,我们努力提供一种阶级理论,允许同时考虑所有设置的理论宇宙及其之间的关系,在进行诸如强迫等诸如强迫等的结构之类的结构时,消除了对“外部理论”的需求。我们还探索了多个级别的类别理论,表明我们最终在整个问题上介绍了所有问题的范围 - 我们在整个阶段都涉及分类过程的范围。那个宇宙没有追求更大的宇宙。我们利用这种新发现的自由来定义一个类别$ {\ bf force} $,其对象是宇宙,其箭头强迫扩展,一个$ 2 $ -2级 - category $ \ mathcal {v} \ mathfrak {erse {errak {erse} $ with and pertories of with universore and ofterory的类别是函数的类别。 $ \ mathbb {cat} $的对象是每个宇宙中的$ 2 $类别类别的$ 2 $类别,并且其组成的bicateGories由伪函数,伪天然转换和修改bicateGories在每个宇宙中的这些$ 2 $类别之间给出。

Recent work in set theory indicates that there are many different notions of 'set', each captured by a different collection of axioms, as proposed by J. Hamkins in [Ham11]. In this paper we strive to give one class theory that allows for a simultaneous consideration of all set theoretical universes and the relationships between them, eliminating the need for recourse 'outside the theory' when carrying out constructions like forcing etc. We also explore multiversal category theory, showing that we are finally free of questions about 'largeness' at each stage of the categorification process when working in this theory -- the category of categories we consider for a given universe contains all large categories in that universe without taking recourse to a larger universe. We leverage this newfound freedom to define a category ${\bf Force}$ whose objects are universes and whose arrows are forcing extensions, a $2$-category $\mathcal{V}\mathfrak{erse}$ whose objects are the categories of sets in each universe and whose component categories are given by functor categories between these categories of sets, and a tricategory $\mathbb{Cat}$ whose objects are the $2$-categories of categories in each universe and whose component bicategories are given by pseudofunctor, pseudonatural transformation and modification bicategories between these $2$-categories of categories in each universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源