论文标题

在多个解决方案的非线性椭圆形系统中,发散形式与不可压缩的约束结合

On Multiple Solutions to a Family of Nonlinear Elliptic Systems in Divergence Form Coupled with an Incompressibility Constraint

论文作者

Taheri, Ali, Vahidifar, Vahideh

论文摘要

本文的目的是证明存在多种解决方案,用于以差异形式的非线性椭圆系统家族,以及一个点式的梯度约束:\ begin {align*} \ left \ left \ oken {arnay} {array} {ll} {ll} {ll} {ll} {ll} {ll} {ll} \ dive \ dive \ \ a { U \} + \ b(| x |,| U |^2,| \ nabla u |^2) &\ text {in} \ω,\\ u =φ\&\ text {on} \ \partialΩ,\ end end {array} \ right。 \ end {align*}其中$ω\ subset \ mathbb {r}^n $($ n \ ge 2 $)是一个有界域,$ u =(u_1,\ dots,u_n)$是矢量映射,$φ$是规定的边界条件。此外,$ \ Mathscr {p} $是与约束$ \ det \ nabla u \ equiv 1 $和$ \ a = \ a = \ a(| x |,| U |^2,| \ nabla u |^2)$,$ \ \ b = \ b = \ b(| x |,| x | U |^nabla |^nabla |^2,|满足无穷大的合适增长。该系统出现在不同领域,例如连续力学和非线性弹性,以及几何函数理论,仅举几例,并且对解决方案集的形式和结构有清晰的理解。此处构建的几何类型借鉴了与Lie group $ {\ bf so}(n)$的紧密链接,其Lie指数和在某些向量字段上作用的多维卷曲操作员。最值得注意的是,从PDE提示的判别类型$δ=δ(\ a,\ b)$将显示在这些解决方案的结构和多重性上具有决定性的作用。

The aim of this paper is to prove the existence of multiple solutions for a family of nonlinear elliptic systems in divergence form coupled with a pointwise gradient constraint: \begin{align*} \left\{ \begin{array}{ll} \dive\{\A(|x|,|u|^2,|\nabla u|^2) \nabla u\} + \B(|x|,|u|^2,|\nabla u|^2) u = \dive \{ \mcP(x) [{\rm cof}\,\nabla u] \} \quad &\text{ in} \ Ω, \\ \text{det}\, \nabla u = 1 \ &\text{ in} \ Ω, \\ u =φ\ &\text{ on} \ \partial Ω, \end{array} \right. \end{align*} where $Ω\subset \mathbb{R}^n$ ($n \ge 2$) is a bounded domain, $u=(u_1, \dots, u_n)$ is a vector-map and $φ$ is a prescribed boundary condition. Moreover $\mathscr{P}$ is a hydrostatic pressure associated with the constraint $\det \nabla u \equiv 1$ and $\A = \A(|x|,|u|^2,|\nabla u|^2)$, $\B = \B(|x|,|u|^2,|\nabla u|^2)$ are sufficiently regular scalar-valued functions satisfying suitable growths at infinity. The system arises in diverse areas, e.g., in continuum mechanics and nonlinear elasticity, as well as geometric function theory to name a few and a clear understanding of the form and structure of the solutions set is of great significance. The geometric type of solutions constructed here draws upon intimate links with the Lie group ${\bf SO}(n)$, its Lie exponential and the multi-dimensional curl operator acting on certain vector fields. Most notably a discriminant type quantity $Δ=Δ(\A,\B)$, prompting from the PDE, will be shown to have a decisive role on the structure and multiplicity of these solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源