论文标题

具有临床记录的医学图像的基于变压器的个性化注意机制

Transformer-based Personalized Attention Mechanism for Medical Images with Clinical Records

论文作者

Takagi, Yusuke, Hashimoto, Noriaki, Masuda, Hiroki, Miyoshi, Hiroaki, Ohshima, Koichi, Hontani, Hidekata, Takeuchi, Ichiro

论文摘要

在医学图像诊断中,确定注意区域的注意区域是一项重要任务。已经开发了各种方法来自动从给定的医学图像中识别目标区域。但是,在实际的医学实践中,诊断不仅基于图像,而且基于各种临床记录。这意味着病理学家检查了患者具有一些先验知识的医学图像,并且注意区域可能会根据临床记录而改变。在这项研究中,我们提出了一种称为个性化注意机制(PERSAM)的方法,根据临床记录,医学图像中的注意区域会自适应地改变。 PERSAM方法的主要思想是使用变压器体系结构的变体编码医疗图像和临床记录之间的关系。为了证明PERSAM方法的有效性,我们将其应用于大规模的数字病理学问题,该问题是根据其Gigapixel全幻灯片图像和临床记录来识别842例恶性淋巴瘤患者的亚型。

In medical image diagnosis, identifying the attention region, i.e., the region of interest for which the diagnosis is made, is an important task. Various methods have been developed to automatically identify target regions from given medical images. However, in actual medical practice, the diagnosis is made based not only on the images but also on a variety of clinical records. This means that pathologists examine medical images with some prior knowledge of the patients and that the attention regions may change depending on the clinical records. In this study, we propose a method called the Personalized Attention Mechanism (PersAM), by which the attention regions in medical images are adaptively changed according to the clinical records. The primary idea of the PersAM method is to encode the relationships between the medical images and clinical records using a variant of Transformer architecture. To demonstrate the effectiveness of the PersAM method, we applied it to a large-scale digital pathology problem of identifying the subtypes of 842 malignant lymphoma patients based on their gigapixel whole slide images and clinical records.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源