论文标题
部分可观测时空混沌系统的无模型预测
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
论文作者
论文摘要
在人群层面学习神经动力学的可解释表示是了解观察到的神经活动与感知和行为如何关系的关键第一步。神经动力学的模型通常集中于神经活动的低维投影,或者随着时间的推移与神经状态明确相关的学习动力学系统。我们讨论了如何通过将动态系统视为低维歧管流量的代表,如何将这两种方法相互关联。在这个概念的基础上,我们提出了一个新的分解动力系统模型,该模型代表了时间序列数据的复杂非平稳和非线性动力学,作为更简单,更容易解释的组件的稀疏组合。我们的模型通过词典学习程序进行了培训,我们在此过程中利用了最新的结果来跟踪稀疏媒介随时间。对于给定数量的参数,动力学的分解性质比以前的切换方法更具表现力,并启用重叠和非平稳动力学的建模。在连续时间和离散的时间教学示例中,我们都证明我们的模型可以很好地近似原始系统,学习有效的表示并捕获动态模式之间的平滑过渡,重点是直观的低维非平稳线性和非线性系统。此外,我们重点介绍了模型有效捕获和Demix种群动力学的能力,该模型从多个独立的子网络产生,这一任务在开关模型上是计算上不切实际的。最后,我们将模型应用于秀丽隐杆线虫数据的神经“全脑”记录,说明了分类为离散状态时被模糊的动态多样性。
Learning interpretable representations of neural dynamics at a population level is a crucial first step to understanding how observed neural activity relates to perception and behavior. Models of neural dynamics often focus on either low-dimensional projections of neural activity, or on learning dynamical systems that explicitly relate to the neural state over time. We discuss how these two approaches are interrelated by considering dynamical systems as representative of flows on a low-dimensional manifold. Building on this concept, we propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data as a sparse combination of simpler, more interpretable components. Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time. The decomposed nature of the dynamics is more expressive than previous switched approaches for a given number of parameters and enables modeling of overlapping and non-stationary dynamics. In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system, learn efficient representations, and capture smooth transitions between dynamical modes, focusing on intuitive low-dimensional non-stationary linear and nonlinear systems. Furthermore, we highlight our model's ability to efficiently capture and demix population dynamics generated from multiple independent subnetworks, a task that is computationally impractical for switched models. Finally, we apply our model to neural "full brain" recordings of C. elegans data, illustrating a diversity of dynamics that is obscured when classified into discrete states.