论文标题

$ \ Mathcal {n} = 4 $超对称Yang-mills的两个循环幽灵免费定量Wilson循环

Two Loop Ghost free Quantisation of Wilson Loops in $\mathcal{N}=4$ supersymmetric Yang-Mills

论文作者

Malcha, Hannes

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We report a perturbative calculation of the expectation value of the infinite straight line Maldacena-Wilson loop in $\mathcal{N}=4$ supersymmetric Yang-Mills theory to order $g^6$. Thus, we extend the previous perturbative result by one order. The vacuum expectation value is reformulated in terms of a non-linear and non-local transformation, the Nicolai map, mapping the full functional measure of the interacting theory to that of a free bosonic theory. The results are twofold. The perturbative cancellations of the different contributions to the Maldacena-Wilson loop are by no means trivial and seem to resemble those of the circular Maldacena-Wilson loop at order $g^4$. Furthermore, we argue that our approach to computing quantum correlation functions is competitive with more standard diagrammatic techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源