论文标题

部分可观测时空混沌系统的无模型预测

Polymorphic-GAN: Generating Aligned Samples across Multiple Domains with Learned Morph Maps

论文作者

Kim, Seung Wook, Kreis, Karsten, Li, Daiqing, Torralba, Antonio, Fidler, Sanja

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Modern image generative models show remarkable sample quality when trained on a single domain or class of objects. In this work, we introduce a generative adversarial network that can simultaneously generate aligned image samples from multiple related domains. We leverage the fact that a variety of object classes share common attributes, with certain geometric differences. We propose Polymorphic-GAN which learns shared features across all domains and a per-domain morph layer to morph shared features according to each domain. In contrast to previous works, our framework allows simultaneous modelling of images with highly varying geometries, such as images of human faces, painted and artistic faces, as well as multiple different animal faces. We demonstrate that our model produces aligned samples for all domains and show how it can be used for applications such as segmentation transfer and cross-domain image editing, as well as training in low-data regimes. Additionally, we apply our Polymorphic-GAN on image-to-image translation tasks and show that we can greatly surpass previous approaches in cases where the geometric differences between domains are large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源