论文标题

在原子芯片上实现最佳时间逆转的实验性实现量子撤消操作的实验

Experimental realization of optimal time-reversal on an atom chip for quantum undo operations

论文作者

Mastroserio, Ivana, Gherardini, Stefano, Lovecchio, Cosimo, Calarco, Tommaso, Montangero, Simone, Cataliotti, Francesco Saverio, Caruso, Filippo

论文摘要

我们报告使用DCRAB最佳控制算法来实现实施量子撤消操作的时间反向程序,该过程将应用于从量子计算到量子通信的量子技术环境中。实际上,通过撤消命令,可以将最后执行的操作时间转换为时间,以完美恢复可以应用外部用户选择的任意新操作的条件。此外,通过进一步概括这个概念,撤消命令还可以允许在过去的通用瞬间逆转量子操作。在这里,由于最佳的时间反转例程,所有这些功能都是在非相基因$^{87} $ rb原子的Bose-Einstein冷凝物(BEC)的五倍f = 2 Hilbert空间上实现的,在基础状态下实现了Atom Chip。具体而言,通过设计一个最佳调制射频场来实现每个时间转换,在任何执行的测试中平均达到92%的精度。实验结果伴随着基于Loschmidt Echo的热力学解释。我们的发现有望在基于门的量子计算的实际情况下促进时间反转操作的实施,其结构比这里考虑的五级系统更复杂。

We report on the use of the dCRAB optimal control algorithm to realize time-reversal procedures for the implementation of quantum undo operations, to be applied in quantum technology contexts ranging from quantum computing to quantum communications. By means of the undo command, indeed, the last performed operation can be time-reversed so as to perfectly restore a condition in which an arbitrary new operation, chosen by the external user, can be applied. Moreover, by further generalizing this concept, the undo command can also allow for the reversing of a quantum operation in a generic instant of the past. Here, thanks to optimal time-reversal routines, all these functionalities are experimentally implemented on the five-fold F=2 Hilbert space of a Bose-Einstein condensate (BEC) of non-interacting $^{87}$Rb atoms in the ground state, realized with an atom chip. Specifically, each time-reversal transformation is attained by designing an optimal modulated radio frequency field, achieving on average an accuracy of around 92% in any performed test. The experimental results are accompanied by a thermodynamic interpretation based on the Loschmidt echo. Our findings are expected to promote the implementation of time-reversal operations in a real scenario of gate-based quantum computing with a more complex structure than the five-level system here considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源