论文标题
训练夜间神经ISP的日夜图像综合
Day-to-Night Image Synthesis for Training Nighttime Neural ISPs
论文作者
论文摘要
现在,许多旗舰智能手机摄像机现在使用专用的神经图像信号处理器(ISP)将嘈杂的原始传感器图像渲染到最终处理的输出。训练噩梦ISP网络依赖于图像对的大规模数据集,其中:(1)捕获的嘈杂的原始图像,捕获了短暂的曝光和高ISO增益; (2)一个地面真相低噪声原始图像,以长时间的暴露和低的ISO捕获,该图像已通过ISP呈现。捕获这样的图像对是乏味且耗时的,需要仔细的设置以确保图像对之间的对齐。另外,由于长期暴露,地面真相图像通常容易出现运动模糊。为了解决这个问题,我们提出了一种合成白天图像中夜间图像的方法。白天的图像易于捕获,表现出低噪声(即使在智能手机摄像机上)也很少受到运动模糊的困扰。我们概述了一个处理框架,以将白天的原始图像转换为具有不同级别噪音的逼真的夜间原始图像的外观。我们的程序使我们能够轻松地产生对齐嘈杂和干净的夜间图像对。我们通过训练神经ISP进行噩梦渲染来展示合成框架的有效性。此外,我们证明,使用合成的夜间图像以及少量的真实数据(例如5%至10%)的效果几乎与仅在真实的夜间图像上进行培训几乎可以表现。我们的数据集和代码可在https://github.com/samsunglabs/day-to-night上找到。
Many flagship smartphone cameras now use a dedicated neural image signal processor (ISP) to render noisy raw sensor images to the final processed output. Training nightmode ISP networks relies on large-scale datasets of image pairs with: (1) a noisy raw image captured with a short exposure and a high ISO gain; and (2) a ground truth low-noise raw image captured with a long exposure and low ISO that has been rendered through the ISP. Capturing such image pairs is tedious and time-consuming, requiring careful setup to ensure alignment between the image pairs. In addition, ground truth images are often prone to motion blur due to the long exposure. To address this problem, we propose a method that synthesizes nighttime images from daytime images. Daytime images are easy to capture, exhibit low-noise (even on smartphone cameras) and rarely suffer from motion blur. We outline a processing framework to convert daytime raw images to have the appearance of realistic nighttime raw images with different levels of noise. Our procedure allows us to easily produce aligned noisy and clean nighttime image pairs. We show the effectiveness of our synthesis framework by training neural ISPs for nightmode rendering. Furthermore, we demonstrate that using our synthetic nighttime images together with small amounts of real data (e.g., 5% to 10%) yields performance almost on par with training exclusively on real nighttime images. Our dataset and code are available at https://github.com/SamsungLabs/day-to-night.