论文标题
基于扰动学习的异常检测
Perturbation Learning Based Anomaly Detection
论文作者
论文摘要
本文提出了一种简单但有效的检测方法。主要思想是学习小型扰动以扰动普通数据并学习分类器,以将正常数据和扰动数据分类为两个不同类别。使用深层神经网络共同学习了扰动器和分类器。重要的是,扰动应尽可能小,但是分类器仍然能够识别来自不受干扰数据的扰动数据。因此,扰动的数据被认为是异常数据,分类器在正常数据和异常数据之间提供了决策界限,尽管培训数据不包含任何异常数据。与对异常检测的最新检测相比,我们的方法不需要关于决策界限的形状(例如超晶体)的任何假设,并且要确定的超参数较少。基准数据集的实证研究验证了我们方法的有效性和优越性。
This paper presents a simple yet effective method for anomaly detection. The main idea is to learn small perturbations to perturb normal data and learn a classifier to classify the normal data and the perturbed data into two different classes. The perturbator and classifier are jointly learned using deep neural networks. Importantly, the perturbations should be as small as possible but the classifier is still able to recognize the perturbed data from unperturbed data. Therefore, the perturbed data are regarded as abnormal data and the classifier provides a decision boundary between the normal data and abnormal data, although the training data do not include any abnormal data. Compared with the state-of-the-art of anomaly detection, our method does not require any assumption about the shape (e.g. hypersphere) of the decision boundary and has fewer hyper-parameters to determine. Empirical studies on benchmark datasets verify the effectiveness and superiority of our method.