论文标题

PCPT和ACPT:DNN模型的版权保护和可追溯性方案

PCPT and ACPT: Copyright Protection and Traceability Scheme for DNN Models

论文作者

Fan, Xuefeng, Fu, Dahao, Gui, Hangyu, Zhang, Xinpeng, Zhou, Xiaoyi

论文摘要

深度神经网络(DNN)在人工智能(AI)领域取得了巨大的成功。但是,DNN模型很容易被犯罪分子非法复制,重新分布或滥用,严重破坏了模型发明者的利益。已经研究了通过神经网络水印对DNN模型的版权保护,但是建立了确定泄漏模型的授权用户的可追溯性机制,这是对AI服务需求的驱动的新问题。由于现有的可追溯性机制用于没有水印的模型,因此产生了少量的假阳性。现有的Black-Box主动保护方案具有松散的授权控制,并且容易受到伪造攻击。因此,根据视频框架和图像感知性哈希算法的黑盒神经网络水印的想法,提出了一种被动版权保护和可追溯性框架PCPT,它使用了其他类别的DNN型号,改善了现有的Traceabibility机制,从而产生了少量的假点。根据授权控制策略和图像感知哈希算法,提出了DNN模型主动版权保护和可追溯性框架ACPT。该框架使用检测器和验证器构建的授权控制中心。这种方法实现了更严格的授权控制,从而在用户和模型所有者之间建立了牢固的联系,可以改善框架安全性,并支持可追溯性验证。

Deep neural networks (DNNs) have achieved tremendous success in artificial intelligence (AI) fields. However, DNN models can be easily illegally copied, redistributed, or abused by criminals, seriously damaging the interests of model inventors. The copyright protection of DNN models by neural network watermarking has been studied, but the establishment of a traceability mechanism for determining the authorized users of a leaked model is a new problem driven by the demand for AI services. Because the existing traceability mechanisms are used for models without watermarks, a small number of false-positives are generated. Existing black-box active protection schemes have loose authorization control and are vulnerable to forgery attacks. Therefore, based on the idea of black-box neural network watermarking with the video framing and image perceptual hash algorithm, a passive copyright protection and traceability framework PCPT is proposed that uses an additional class of DNN models, improving the existing traceability mechanism that yields a small number of false-positives. Based on an authorization control strategy and image perceptual hash algorithm, a DNN model active copyright protection and traceability framework ACPT is proposed. This framework uses the authorization control center constructed by the detector and verifier. This approach realizes stricter authorization control, which establishes a strong connection between users and model owners, improves the framework security, and supports traceability verification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源