论文标题

使用参数估计倾斜度估算排名列表的离线评估

Offline Evaluation of Ranked Lists using Parametric Estimation of Propensities

论文作者

Vinay, Vishwa, Kilaru, Manoj, Arbour, David

论文摘要

搜索引擎和推荐系统试图不断提高用户提供的体验质量。完善产生根据用户请求显示的列表的排名是此过程的重要组成部分。一个普遍的做法是,服务提供商要进行更改(例如新排名功能,不同的排名模型),并且A/B在其一小部分用户上测试它们以确定更改的价值。一种替代方法估计提出的更改离线的有效性,利用先前收集的旧排名中的点击数据来提出新排名者产生的排名列表上的用户行为。大多数离线评估方法都调用了所研究的反向倾向权重,以调整已记录数据固有的偏差。在本文中,我们建议使用这些倾向的参数估计值。具体而言,通过利用众所周知的学习对方法作为子例程,我们展示了当要评估的新排名与记录的排名不同时,如何准确地进行离线评估。

Search engines and recommendation systems attempt to continually improve the quality of the experience they afford to their users. Refining the ranker that produces the lists displayed in response to user requests is an important component of this process. A common practice is for the service providers to make changes (e.g. new ranking features, different ranking models) and A/B test them on a fraction of their users to establish the value of the change. An alternative approach estimates the effectiveness of the proposed changes offline, utilising previously collected clickthrough data on the old ranker to posit what the user behaviour on ranked lists produced by the new ranker would have been. A majority of offline evaluation approaches invoke the well studied inverse propensity weighting to adjust for biases inherent in logged data. In this paper, we propose the use of parametric estimates for these propensities. Specifically, by leveraging well known learning-to-rank methods as subroutines, we show how accurate offline evaluation can be achieved when the new rankings to be evaluated differ from the logged ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源