论文标题
通过模型扩展的完整波形反演:实际应用
Full waveform inversion by model extension: practical applications
论文作者
论文摘要
产生可靠的声学地下速度模型仍然是石油和天然气行业传统成像序列的主要瓶颈。在复杂的地质环境中,基于射线或波动的层析成像方法的输出可能不够准确,无法使全波形反转(FWI)收敛到地质令人满意的地球模型。我们创建了一种通过模型扩展(FWIME)称为完整波形反转的新方法,其中波动方程迁移速度分析(WEMVA)技术与FWI的修改版本有效配对。我们表明,我们的方法比依次应用WEMVA和FWI更强大,并且能够在不使用良好的初始猜测或低频能量的情况下收敛到准确的解决方案。我们展示了Fwime在五个现实且具有挑战性的数值示例上的潜力,这些示例模拟了碳氢化合物勘探经常遇到的复杂地质场景。我们在整个优化过程中逐步指导读者。我们表明,我们的方法可以同时使用相同的简单机制逆转所有波动类型,并且无需使用用户密集型的超参数调整过程。在在线存储库中,我们提供了一个完全可复制的开源软件解决方案,该软件解决方案,该解决方案使用通用图形处理单元(GPU)和用户友好的Python界面实现。
Producing reliable acoustic subsurface velocity models still remains the main bottleneck of the oil and gas industry's traditional imaging sequence. In complex geological settings, the output of conventional ray-based or wave-equation-based tomographic methods may not be accurate enough for full waveform inversion (FWI) to converge to a geologically satisfactory Earth model. We create a new method referred to as full waveform inversion by model extension (FWIME) in which a wave-equation migration velocity analysis (WEMVA) technique is efficiently paired with a modified version of FWI. We show that our method is more powerful than applying WEMVA and FWI sequentially, and that it is able to converge to accurate solutions without the use of a good initial guess or low-frequency energy. We demonstrate FWIME's potential on five realistic and challenging numerical examples that simulate complex geological scenarios often encountered in hydrocarbon exploration. We guide the reader step by step throughout the optimization process. We show that our method can simultaneously invert all wave types with the same simple mechanism and without the need for a user-intensive hyper-parameter tuning process. In an online repository, we provide a fully-reproducible open-source software solution implemented with general-purpose graphics processing units (GPU) and with a user-friendly Python interface.