论文标题

利用机器学习勒索软件检测

Leveraging Machine Learning for Ransomware Detection

论文作者

Rani, Nanda, Dhavale, Sunita Vikrant

论文摘要

当前的大流行状况在全球范围内急剧增加了网络攻击。攻击者正在使用Trojans,间谍软件,Rootkits,Worms,lansomware等恶意软件。勒索软件是最臭名昭著的恶意软件,但我们没有任何防御机制来防止或检测零日攻击。业内大多数防御性产品都依赖于基于签名的机制或基于流量的异常检测。因此,研究人员正在采用机器学习和深度学习来开发一种基于行为的机制来检测恶意软件。尽管我们有一些混合机制对可执行文件进行静态和动态分析,但我们没有任何完整的证明检测概念证明,这些概念可用于开发特定于勒索软件的完整证明产品。在这项工作中,我们开发了使用机器学习模型勒索软件检测的概念证明。我们已经进行了详细的分析,并比较了几种机器学习模型,例如决策树,随机森林,KNN,SVM,XGBOOST和LOGISTIS回归。我们获得了98.21%的精度,并评估了各种指标,例如精度,召回,TP,TN,FP和FN。

The current pandemic situation has increased cyber-attacks drastically worldwide. The attackers are using malware like trojans, spyware, rootkits, worms, ransomware heavily. Ransomware is the most notorious malware, yet we did not have any defensive mechanism to prevent or detect a zero-day attack. Most defensive products in the industry rely on either signature-based mechanisms or traffic-based anomalies detection. Therefore, researchers are adopting machine learning and deep learning to develop a behaviour-based mechanism for detecting malware. Though we have some hybrid mechanisms that perform static and dynamic analysis of executable for detection, we have not any full proof detection proof of concept, which can be used to develop a full proof product specific to ransomware. In this work, we have developed a proof of concept for ransomware detection using machine learning models. We have done detailed analysis and compared efficiency between several machine learning models like decision tree, random forest, KNN, SVM, XGBoost and Logistic Regression. We obtained 98.21% accuracy and evaluated various metrics like precision, recall, TP, TN, FP, and FN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源