论文标题
通过对非线性边界区域方程的有效数值解对高速边界层中Görtler涡流的研究
Investigation of Görtler vortices in high-speed boundary layers via an efficient numerical solution to the non-linear boundary region equations
论文作者
论文摘要
流向涡流和相关条纹在边界层上的扁平或凹面表面演变,这是由于壁表面上游或触发的干扰。在瞬态生长阶段之后,完全发达的涡流结构容易受到无粘性的二次不稳定性的影响,从而通过“爆发”过程提早过渡到湍流。在高速边界层中,由于可压缩性和热效应而引起更多的并发症,这对于更高的马赫数而言变得更加重要。在本文中,我们研究了使用边界区域方程(BRE)形式主义在高速边界层中发展的Görtler涡旋,我们使用有效的数值算法来解决。使用在壁上的小蒸腾速度激发条纹。我们基于BRE的算法被发现优于直接数值模拟(DNS)和临时非线性抛物性稳定性方程(PSE)模型。 BRE解决方案在计算上的昂贵不如完整的DNS,并且比基于PSE的模型具有更严格的理论基础。例如,可以通过单个处理器通过BRE方法在几分钟内预测Görtler涡流系统在高速边界层中的完整开发。计算时间的大幅减少是这项工作的主要成就之一。我们表明,除其他外,它允许在合理的总计算时间中调查反馈控制。我们通过BRE解决方案研究了Görtler涡流系统的开发,并在各种自由式马赫数字上参数为$ m_ \ infty $和SPANWIESWIESS分离$λ$的流入干扰。
Streamwise vortices and the associated streaks evolve in boundary layers over flat or concave surfaces due to disturbances initiated upstream or triggered by the wall surface. Following the transient growth phase, the fully-developed vortex structures become susceptible to inviscid secondary instabilities resulting in early transition to turbulence via `bursting' processes. In high-speed boundary layers, more complications arise due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this paper, we study Görtler vortices developing in high-speed boundary layers using the boundary region equations (BRE) formalism, which we solve using an efficient numerical algorithm. Streaks are excited using a small transpiration velocity at the wall. Our BRE-based algorithm is found to be superior to direct numerical simulation (DNS) and ad-hoc nonlinear parabolized stability equation (PSE) models. BRE solutions are less computationally costly than a full DNS and have a more rigorous theoretical foundation than PSE-based models. For example, the full development of a Görtler vortex system in high-speed boundary layers can be predicted in a matter of minutes using a single processor via the BRE approach. This substantial reduction in calculation time is one of the major achievements of this work. We show, among other things, that it allows investigation into feedback control in reasonable total computational times. We investigate the development of the Görtler vortex system via the BRE solution with feedback control parametrically at various freestream Mach numbers $M_\infty$ and spanwise separations $λ$ of the inflow disturbances.