论文标题

在机会网络中传播语义知识和内容的认知方法的设计和评估

Design and evaluation of a cognitive approach for disseminating semantic knowledge and content in opportunistic networks

论文作者

Mordacchini, Matteo, Valerio, Lorenzo, Conti, Marco, Passarella, Andrea

论文摘要

在网络物理收敛的情况下,信息在物理和网络世界之间无缝地流动。在这里,用户的移动设备代表了一个自然的桥梁,用户通过该桥梁处理获得的信息并执行操作。在此上下文中可用的大量数据要求新颖,自动及轻量级的数据过滤解决方案,其中最终仅向用户提供相关信息。此外,在许多实际情况下,数据并未在预定义的主题中分类,但是通常伴随着语义描述可能描述用户的兴趣。在这些复杂的条件下,用户设备不仅应自动了解网络中数据的存在,而且还应了解其语义描述和它们之间的相关性。为了解决这些问题,我们基于来自认知科学的简单且非常有效的模型(称为认知启发式方法),介绍了机会网络中知识和数据传播的一系列算法。我们展示了如何利用它们来传播语义数据和相应的数据项。在不同的不同条件下,我们提供了彻底的绩效分析,将我们的结果与非认知解决方案进行了比较。仿真结果证明了我们的解决方案对更有效的语义知识获取和表示形式以及更量身定制的内容获取的出色表现。

In cyber-physical convergence scenarios information flows seamlessly between the physical and the cyber worlds. Here, users' mobile devices represent a natural bridge through which users process acquired information and perform actions. The sheer amount of data available in this context calls for novel, autonomous and lightweight data-filtering solutions, where only relevant information is finally presented to users. Moreover, in many real-world scenarios data is not categorised in predefined topics, but it is generally accompanied by semantic descriptions possibly describing users' interests. In these complex conditions, user devices should autonomously become aware not only of the existence of data in the network, but also of their semantic descriptions and correlations between them. To tackle these issues, we present a set of algorithms for knowledge and data dissemination in opportunistic networks, based on simple and very effective models (called cognitive heuristics) coming from cognitive sciences. We show how to exploit them to disseminate both semantic data and the corresponding data items. We provide a thorough performance analysis, under various different conditions comparing our results against non-cognitive solutions. Simulation results demonstrate the superior performance of our solution towards a more effective semantic knowledge acquisition and representation, and a more tailored content acquisition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源