论文标题

Box2mask:使用边界框进行弱监督的3D语义实例分割

Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes

论文作者

Chibane, Julian, Engelmann, Francis, Tran, Tuan Anh, Pons-Moll, Gerard

论文摘要

当前的3D分割方法在很大程度上依赖于大规模的点云数据集,众所周知,这些数据集很费力地注释。很少有尝试规避需要每点注释的需求。在这项工作中,我们查看弱监督的3D语义实例分割。关键的想法是利用3D边界框标签,更容易,更快地注释。确实,我们表明只有仅使用边界框标签训练密集的细分模型。在我们方法的核心中,\ name {}是一个深层模型,灵感来自古典霍夫投票,直接投票赞成边界框参数,并且是专门针对界限框投票量身定制的群集方法。这超出了常用的中心票,这不会完全利用边界框注释。在扫描仪测试中,我们弱监督的模型在其他弱监督的方法中获得了领先的性能(+18 MAP@50)。值得注意的是,它还达到了当前完全监督模型的50分数的地图的97%。为了进一步说明我们的工作的实用性,我们在最近发布的Arkitscenes数据集中训练Box2mask,该数据集仅使用3D边界框注释,并首次显示引人注目的3D实例细分掩码。

Current 3D segmentation methods heavily rely on large-scale point-cloud datasets, which are notoriously laborious to annotate. Few attempts have been made to circumvent the need for dense per-point annotations. In this work, we look at weakly-supervised 3D semantic instance segmentation. The key idea is to leverage 3D bounding box labels which are easier and faster to annotate. Indeed, we show that it is possible to train dense segmentation models using only bounding box labels. At the core of our method, \name{}, lies a deep model, inspired by classical Hough voting, that directly votes for bounding box parameters, and a clustering method specifically tailored to bounding box votes. This goes beyond commonly used center votes, which would not fully exploit the bounding box annotations. On ScanNet test, our weakly supervised model attains leading performance among other weakly supervised approaches (+18 mAP@50). Remarkably, it also achieves 97% of the mAP@50 score of current fully supervised models. To further illustrate the practicality of our work, we train Box2Mask on the recently released ARKitScenes dataset which is annotated with 3D bounding boxes only, and show, for the first time, compelling 3D instance segmentation masks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源