论文标题
部分可观测时空混沌系统的无模型预测
Stretch formulations and the Poynting effect in nonlinear elasticity
论文作者
论文摘要
左cauchy绿色变形张量$ \ mathbf {b} $(或正确的$ \ mathbf {c} $)的第二个不变性是在非线性弹性中发挥了基本作用。仅取决于第一个不变性的广义新霍克材料会导致与实验数据冲突的普遍关系,无法显示重要的机械行为(例如简单剪切中的poynting效果),并且可能无法与中尺度上的令人满意的联系。但是,第二个不变术语不是对能量的高阶应力贡献,这使我们反思了新霍克材料不完整的内容。我们不是通常的Cauchy-Green弹性配方,而是从左伸展的角度研究此问题,$ \ MathBf {V} = \ sqrt {\ Mathbf {b {b}} $和Bell Strain $ \ \ \ \ \ Mathbf {E} _} _ {这些张量的不变性提供了与$ \ mathbf {b} $的解释不同的解释,并链接到不同类别的材料。我们采用的主要例子是贝尔菌株中的一般各向同性能量二次,是二次 - 二-Biot材料。尽管像Neo-Hookean一样在伸展运动中是二次的,但该材料在简单的剪切中既呈现了经典和反向po的效果,它们的方向是恒定共轭的函数,其函数是$ \ mathbf {e} _ {\ text {bell text {bell}}} $的$ \ mathbf {e} _ {e} _ {e} _ {e}} $。它的第二个正常应力也呈现局部最大值,这是剪切量的函数,剪切量的函数是在Mooney-Rivlin固体中未观察到的过渡。此外,即使是在钟形菌株中线性的VARGA模型,也会以简单的剪切方式呈现po po,这提出了一个问题,为什么对于绿色 - 拉格朗日菌株的线性线性而言,这是不正确的。还讨论了固体圆柱体的纯扭转,尤其是如何在不同配方之间形成轴向力对比的行为。
The second invariant of the left Cauchy-Green deformation tensor $\mathbf{B}$ (or right $\mathbf{C}$) has been argued to play a fundamental role in nonlinear elasticity. Generalized neo-Hookean materials, which depend only on the first invariant, lead to universal relations that conflict with experimental data, fail to display important mechanical behaviors (such as the Poynting effect in simple shear), and may not provide a satisfactory link with the mesoscale. However, the second invariant term is not a higher order strain contribution to the energy, which lead us to reflect on what is incomplete about neo-Hookean materials. Instead of the usual Cauchy-Green elastic formulation, we investigate this matter from the perspective of left stretch $\mathbf{V}= \sqrt{\mathbf{B}}$ and Bell strain $\mathbf{E}_{\text{Bell}} = \mathbf{V}-\mathbf{I}$ formulations. Invariants of these tensors offer a different interpretation than those of $\mathbf{B}$ and are linked to different classes of materials. The main example we adopt is a general isotropic energy quadratic in Bell strains, the quadratic-Biot material. Despite being quadratic in stretch like neo-Hookean, this material presents both the classic and reverse Poynting effect in simple shear, whose direction switches as a function of the constant conjugate to the second invariant of $\mathbf{E}_{\text{Bell}}$. Its second normal stress also presents a local maximum as a function of the amount of shear, a transition that is not observed in a Mooney-Rivlin solid. Moreover, even the Varga model, linear in Bell strains, presents Poynting in simple shear, which poses the question of why this is not true for a model linear in Green-Lagrange strains. Pure torsion of a solid cylinder is also discussed, particularly how the behavior of the resultant axial force contrasts between the different formulations.