论文标题
高斯自由场演化的独特性和非唯一性在二维灯芯下有序的立方波方程
Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the nonlinear wave equation (NLW) on the two-dimensional torus $\mathbb T^2$ with Gaussian random initial data on $H^s(\mathbb T^2) \times H^{s-1}(\mathbb T^2)$, $s < 0$, distributed according to the base Gaussian free field $μ$ associated with the invariant Gibbs measure studied by Thomann and the first author (2020). In particular, we investigate the approximation property of the corresponding solution by smooth (random) solutions. Our main results in this paper are two-fold. (i) We show that the solution map for the renormalized cubic NLW defined on the Gaussian free field $μ$ is the unique extension of the solution map defined for smoothed Gaussian initial data obtained by mollification, independent of mollification kernels. (ii) We also show that there is a regularization of the Gaussian initial data so that the corresponding smooth solutions almost surely have no limit in the natural topology. This second result in particular states that one can not use arbitrary smooth approximation for the renormalized cubic NLW dynamics. As a preliminary step for proving (ii), we establish a (deterministic) norm inflation result at general initial data for the (unrenormalized) cubic NLW on $\mathbb T^d$ and $\mathbb R^d$ in negative Sobolev spaces, extending the norm inflation result by Christ, Colliander, and Tao (2003).