论文标题

超谐波的不稳定波浪

Superharmonic Instability of Stokes Waves

论文作者

Korotkevich, Alexander O., Lushnikov, Pavel M., Semenova, Anastassiya A., Dyachenko, Sergey A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A stability of nearly limiting Stokes waves to superharmonic perturbations is considered numerically. The new, previously inaccessible branches of superharmonic instability were investigated. Our numerical simulations suggest that eigenvalues of linearized dynamical equations, corresponding to the unstable modes, appear as a result of a collision of a pair of purely imaginary eigenvalues at the origin, and a subsequent appearance of a pair of purely real eigenvalues: a positive and a negative one that are symmetric with respect to zero. Complex conjugate pairs of purely imaginary eigenvalues correspond to stable modes, and as the steepness of the underlying Stokes wave grows, the pairs move toward the origin along the imaginary axis. Moreover, when studying the eigenvalues of linearized dynamical we find that as the steepness of the Stokes wave grows, the real eigenvalues follow a universal scaling law, that can be approximated by a power law. The asymptotic power law behaviour of this dependence for instability of Stokes waves close to the limiting one is proposed. Surface elevation profiles for several unstable eigenmodes are made available through http://stokeswave.org website.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源