论文标题
氧化锆的压电和高电是通过机器学习力场的研究
Piezo- and pyroelectricity in Zirconia: a study with machine learned force fields
论文作者
论文摘要
在ZRO2和基于HFO2的薄膜中发现非常大的压电和高电图效应为开发硅兼容的传感器和演员设备提供了新的机会。该作用被扩增到靠近极性正晶到四方相变温度的接近。分子动力学是模拟此类效应的首选技术,尽管它的应用必须解决足够准确性和原子质力场足够效率之间的困境。在这里,我们提出了一个基于神经网络的深层ZRO2基于ZRO2的原子间力场,它使用深度潜在框架中的系统学习程序从从头算数据中学到了学到的。验证模型电位以预测各种结构和动态特性,其精度与密度功能理论计算相当。然后,使用分子动力学计算,深层电位模型用于重现ZRO2中不同热膨胀和压电和pyroelectric现象。在模拟直接效应的低温下,我们发现压电系数和型载体系数的负值与从头算计算相匹配。接近相变温度,这些值仍然为负并变大。模拟场诱导的效果以上高于相变温度,我们发现与观测值相匹配的正面,巨型压电系数。该模型能够解释与极性 - 正晶到四方相变相关的实验观测的较大值和符号。该模型还解释了最近观察到的类似系统中的巨型介电常数。
The discovery of very large piezo- and pyroelectric effects in ZrO2 and HfO2-based thin films opens up new opportunities to develop silicon-compatible sensor and actor devices. The effects are amplified close to the polar-orthorhombic to tetragonal phase transition temperature. Molecular dynamics is the preferred technique to simulate such effects, though its application has to solve the dilemma between sufficient accuracy and sufficient efficiency of the interatomic force field. Here we present a deep neural network-based interatomic force field of ZrO2 learned from ab initio data using a systematic learning procedure in the Deep Potential framework. The model potential is verified to predict a variety of structural and dynamic properties with an accuracy comparable to density functional theory calculations. Then the Deep Potential model is used to reproduce the different thermal expansion and piezo and pyroelectric phenomena in ZrO2 with molecular dynamics calculations. At low temperature simulating the direct effect we find negative values for the piezo-and pyroelectric coefficients matching the ab initio calculations. Approaching the phase transition temperature these values remain negative and become large. Simulating the field induced effect above the phase transition temperature we find positive, giant piezo-electric coefficients matching the observations. The model is able to explain the large values and the sign of the experimental observations in relation to the polar-orthorhombic to tetragonal phase transition. The model furthermore explains the recently observed giant dielectric constant in a similiar system.