论文标题
神经网络验证和证明生产
Neural Network Verification with Proof Production
论文作者
论文摘要
深度神经网络(DNN)越来越多地用于安全至关重要的系统中,并且迫切需要保证其正确性。因此,验证社区设计了多种技术和工具来验证DNN。当DNN验证者发现触发错误的输入时,很容易确认;但是,当他们报告不存在错误时,就无法确保验证工具本身没有缺陷。由于在DNN验证工具中已经观察到了多个错误,因此这将DNN验证的适用性提出了质疑。在这项工作中,我们提出了一种具有证明生产能力的基于简单的DNN验证符的新型机制:产生易于检查的不可满足性见证人,这证明了没有错误的情况。我们的证明生产是基于著名的Farkas引理的有效适应,并结合处理分段线性函数和数值精度误差的机制。作为概念的证明,我们在Marabou DNN验证者之上实施了技术。我们对避免空中碰撞的安全至关重要系统的评估表明,在几乎所有情况下,证明生产都成功了,只需要最小的开销。
Deep neural networks (DNNs) are increasingly being employed in safety-critical systems, and there is an urgent need to guarantee their correctness. Consequently, the verification community has devised multiple techniques and tools for verifying DNNs. When DNN verifiers discover an input that triggers an error, that is easy to confirm; but when they report that no error exists, there is no way to ensure that the verification tool itself is not flawed. As multiple errors have already been observed in DNN verification tools, this calls the applicability of DNN verification into question. In this work, we present a novel mechanism for enhancing Simplex-based DNN verifiers with proof production capabilities: the generation of an easy-to-check witness of unsatisfiability, which attests to the absence of errors. Our proof production is based on an efficient adaptation of the well-known Farkas' lemma, combined with mechanisms for handling piecewise-linear functions and numerical precision errors. As a proof of concept, we implemented our technique on top of the Marabou DNN verifier. Our evaluation on a safety-critical system for airborne collision avoidance shows that proof production succeeds in almost all cases and requires only minimal overhead.