论文标题

Neurounlock:解锁混淆的深神经网络的结构

NeuroUnlock: Unlocking the Architecture of Obfuscated Deep Neural Networks

论文作者

Ahmadi, Mahya Morid, Alrahis, Lilas, Colucci, Alessio, Sinanoglu, Ozgur, Shafique, Muhammad

论文摘要

深神经网络(DNN)的进步导致了它们在不同环境中的部署,包括安全和关键安全应用程序。结果,这些模型的特征已成为需要保护恶意用户的敏感智力特性。通过泄漏的侧通道(例如,内存访问)提取DNN的体系结构,使对手可以(i)克隆模型,以及(ii)手工艺对手攻击。 DNN混淆,通过更改给定DNN的运行时痕迹,在保留其功能的同时,通过更改给定DNN的运行时痕迹来阻碍基于侧道通道的建筑(SCAS)攻击。在这项工作中,我们暴露了最先进的DNN混淆方法对这些攻击的脆弱性。我们提出了Neurounlock,这是一种针对混淆的DNN的新型SCAS攻击。我们的Neurounlock采用了一个序列到序列模型,该模型了解混淆过程并自动将其恢复,从而恢复原始的DNN体系结构。我们通过恢复在NVIDIA RTX 2080 TI图形处理单元(GPU)上恢复200个随机生成和混淆的DNN的架构来证明Neurounlock的有效性。此外,Neurounlock恢复了其他各种混淆的DNN的架构,例如VGG-11,VGG-13,Resnet-20和Resnet-32网络。恢复体系结构后,Neurounlock自动构建了几乎等效的DNN,测试精度仅下降1.4%。我们进一步表明,与在混淆版本上推出后,对恢复的DNN的对抗性攻击平均提高了51.7%的成功率。此外,我们提出了一种新颖的方法,用于DNN混淆,Redlock,它消除了混淆的确定性性质,并实现了2.16倍对Neurounlock攻击的弹性。我们将Neurounlock和Redlock释放为开源框架。

The advancements of deep neural networks (DNNs) have led to their deployment in diverse settings, including safety and security-critical applications. As a result, the characteristics of these models have become sensitive intellectual properties that require protection from malicious users. Extracting the architecture of a DNN through leaky side-channels (e.g., memory access) allows adversaries to (i) clone the model, and (ii) craft adversarial attacks. DNN obfuscation thwarts side-channel-based architecture stealing (SCAS) attacks by altering the run-time traces of a given DNN while preserving its functionality. In this work, we expose the vulnerability of state-of-the-art DNN obfuscation methods to these attacks. We present NeuroUnlock, a novel SCAS attack against obfuscated DNNs. Our NeuroUnlock employs a sequence-to-sequence model that learns the obfuscation procedure and automatically reverts it, thereby recovering the original DNN architecture. We demonstrate the effectiveness of NeuroUnlock by recovering the architecture of 200 randomly generated and obfuscated DNNs running on the Nvidia RTX 2080 TI graphics processing unit (GPU). Moreover, NeuroUnlock recovers the architecture of various other obfuscated DNNs, such as the VGG-11, VGG-13, ResNet-20, and ResNet-32 networks. After recovering the architecture, NeuroUnlock automatically builds a near-equivalent DNN with only a 1.4% drop in the testing accuracy. We further show that launching a subsequent adversarial attack on the recovered DNNs boosts the success rate of the adversarial attack by 51.7% in average compared to launching it on the obfuscated versions. Additionally, we propose a novel methodology for DNN obfuscation, ReDLock, which eradicates the deterministic nature of the obfuscation and achieves 2.16X more resilience to the NeuroUnlock attack. We release the NeuroUnlock and the ReDLock as open-source frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源