论文标题

在电荷密度波状态1 $ t $ -tase $ _2 $中,在频谱上解决相干声子的阶段和振幅

Spectrally resolving the phase and amplitude of coherent phonons in the charge density wave state of 1$T$-TaSe$_2$

论文作者

Sayers, Charles J., Conte, Stefano Dal, Wolverson, Daniel, Gadermaier, Christoph, Cerullo, Giulio, Carpene, Ettore, Da Como, Enrico

论文摘要

相干声子的激发和检测已对凝结物质提供了独特的见解,尤其是具有强型电子偶联的材料。我们报告了一项对层状电荷密度波(CDW)化合物1 $ t $ -tase $ _2 $使用瞬态宽带反射率光谱进行的研究的研究,在光子能量范围1.75-2.65 eV中。观察到了几种强烈而持久(> 20 ps)的振荡,这是由CDW超晶格重建产生的,可以详细分析其振幅和相位的光谱依赖性。我们发现,对于高于2.4 eV的能量,转变涉及ta d波段,在2.19 Thz处的CDW振幅模式主导了相干响应。相反,在较低的能量下,跳动是在其他频率之间出现的,在2.95 THz时特别激烈。有趣的是,我们的频谱分析揭示了2.4 eV的$π$相位移位。讨论了结果,考虑了特定模式与参与稳态反射率中光学跃迁的能带的选择性耦合。这项工作展示了连贯的声子光谱如何区分和解决与CDW顺序强烈耦合的光学状态,并提供通常隐藏在常规稳态实验中的其他信息。

The excitation and detection of coherent phonons has given unique insights into condensed matter, in particular for materials with strong electron-phonon coupling. We report a study of coherent phonons in the layered charge density wave (CDW) compound 1$T$-TaSe$_2$ performed using transient broadband reflectivity spectroscopy, in the photon energy range 1.75-2.65 eV. Several intense and long lasting (> 20 ps) oscillations, arising from the CDW superlattice reconstruction, are observed allowing for detailed analysis of the spectral dependence of their amplitude and phase. We find that for energies above 2.4 eV, where transitions involve Ta d-bands, the CDW amplitude mode at 2.19 THz dominates the coherent response. At lower energies, instead, beating arises between additional frequencies, with a particularly intense mode at 2.95 THz. Interestingly, our spectral analysis reveals a $π$ phase shift at 2.4 eV. Results are discussed considering the selective coupling of specific modes to energy bands involved in the optical transitions seen in steady-state reflectivity. The work demonstrates how coherent phonon spectroscopy can distinguish and resolve optical states strongly coupled to the CDW order and provide additional information normally hidden in conventional steady-state experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源