论文标题
Glo-in-in-An:整体肾小球检测,分割和病变表征,具有大规模的Web图像挖掘
Glo-In-One: Holistic Glomerular Detection, Segmentation, and Lesion Characterization with Large-scale Web Image Mining
论文作者
论文摘要
高分辨率全幻灯片成像(WSI)对肾小球的定量检测,分割和表征在计算机辅助诊断和科学研究中在数字肾脏病理学中起着重要作用。从历史上看,这种全面的量化需要广泛的编程技能,以便能够处理异质和定制的计算工具。为了弥合非技术用户执行肾小球定量的差距,我们开发了GLO-IN-IN-INTIOLKIT,以通过单个命令行实现整体肾小球检测,分割和表征。此外,我们发布了30,000个未标记的肾小球图像的大规模集合,以进一步促进自我监督深度学习的算法发展。 GLO-in-in-in-inter工具包的输入是WSIS,而输出为(1)WSI-LEVEL多类圆圈肾小球检测结果(可以用Imagesscope直接操作),(2)带有分段掩码的肾小球图像贴片,以及(3)不同的病变类型。为了利用Glo-In-In-Inter工具包的性能,我们介绍了自我保护的深度学习,以通过大规模的Web图像挖掘来肾小球定量。与基线监督方法相比,GGS细粒分类模型的性能达到了不错的性能,而仅使用10%的注释数据。肾小球检测的平均精度为0.627,具有圆形表示,而肾小球分割的平均精度为0.955个斑点骰子相似性系数(DSC)。
The quantitative detection, segmentation, and characterization of glomeruli from high-resolution whole slide imaging (WSI) play essential roles in the computer-assisted diagnosis and scientific research in digital renal pathology. Historically, such comprehensive quantification requires extensive programming skills in order to be able to handle heterogeneous and customized computational tools. To bridge the gap of performing glomerular quantification for non-technical users, we develop the Glo-In-One toolkit to achieve holistic glomerular detection, segmentation, and characterization via a single line of command. Additionally, we release a large-scale collection of 30,000 unlabeled glomerular images to further facilitate the algorithmic development of self-supervised deep learning. The inputs of the Glo-In-One toolkit are WSIs, while the outputs are (1) WSI-level multi-class circle glomerular detection results (which can be directly manipulated with ImageScope), (2) glomerular image patches with segmentation masks, and (3) different lesion types. To leverage the performance of the Glo-In-One toolkit, we introduce self-supervised deep learning to glomerular quantification via large-scale web image mining. The GGS fine-grained classification model achieved a decent performance compared with baseline supervised methods while only using 10% of the annotated data. The glomerular detection achieved an average precision of 0.627 with circle representations, while the glomerular segmentation achieved a 0.955 patch-wise Dice Similarity Coefficient (DSC).