论文标题

矩阵的分布在$ \ mathbb {f} _q [x] $上

Distributions of Matrices over $\mathbb{F}_q[x]$

论文作者

Ji, Yibo

论文摘要

在本文中,我们计算矩阵$ a =(a_ {i,j})\ in \ Mathcal {o} \ subset mat_ {n \ times n}(\ Mathbb {f} _q [x] _q [x])$ t $,和$ \ mathcal {o} $ a $ gl_n(\ mathbb {f} _q [x])$的给定轨道。通过一个基本参数,我们表明上述数字恰好是$ \#gl_n(\ mathbb {f} _Q)\ cdot q^{(n-1)(nk-t)} $。该公式在$ \ mathbb {f} _q [x] $上给出了一个等式分布结果,该结果以$ \ mathbb {z} $以前的结果为模拟。

In this paper, we count the number of matrices $A = (A_{i,j} )\in \mathcal{O} \subset Mat_{n\times n}(\mathbb{F}_q[x])$ where $deg(A_{i,j})\leq k, 1\leq i,j\leq n$, $deg(\det A) = t$, and $\mathcal{O}$ a given orbit of $GL_n(\mathbb{F}_q[x])$. By an elementary argument, we show that the above number is exactly $\# GL_n(\mathbb{F}_q)\cdot q^{(n-1)(nk-t)}$. This formula gives an equidistribution result over $\mathbb{F}_q[x]$ which is an analogue, in strong form, of a result over $\mathbb{Z}$ before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源