论文标题

不断发展的领域概括

Evolving Domain Generalization

论文作者

Wang, William Wei, Xu, Gezheng, Pu, Ruizhi, Li, Jiaqi, Zhou, Fan, Shui, Changjian, Ling, Charles, Gagné, Christian, Wang, Boyu

论文摘要

域的概括旨在从多个不同但相关的源任务中学习一个预测模型,这些任务可以很好地推广到目标任务,而无需访问任何目标数据。现有的域泛化方法忽略了任务之间的关系,假设所有任务都是从固定环境中采样的。因此,当部署在不断发展的环境中时,它们可能会失败。为此,我们制定和研究\ emph {Emph {Edg)方案,该方案不仅利用了源数据,还利用其不断发展的模式来为看不见的任务生成模型。我们的理论结果通过学习全球一致的定向映射函数来揭示了建模两个连续任务之间关系的好处。在实践中,我们的分析还建议以元学习方式解决DDG问题,这导致\ emph {定向原型网络},这是DDG问题的第一种方法。合成和现实世界数据集的经验评估验证了我们方法的有效性。

Domain generalization aims to learn a predictive model from multiple different but related source tasks that can generalize well to a target task without the need of accessing any target data. Existing domain generalization methods ignore the relationship between tasks, implicitly assuming that all the tasks are sampled from a stationary environment. Therefore, they can fail when deployed in an evolving environment. To this end, we formulate and study the \emph{evolving domain generalization} (EDG) scenario, which exploits not only the source data but also their evolving pattern to generate a model for the unseen task. Our theoretical result reveals the benefits of modeling the relation between two consecutive tasks by learning a globally consistent directional mapping function. In practice, our analysis also suggests solving the DDG problem in a meta-learning manner, which leads to \emph{directional prototypical network}, the first method for the DDG problem. Empirical evaluation of both synthetic and real-world data sets validates the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源