论文标题
部分可观测时空混沌系统的无模型预测
Brill-Noether theory and Green's conjecture for general curves on simple abelian surfaces
论文作者
论文摘要
在本文中,我们计算了在非原始线性系统中,曲线的brill-noether loci $ w^1_d(c)$的尺寸和尺寸最初以$ k3 $的表面引入。作为推论,我们获得了格林将军在阿贝尔表面上曲线的猜想。
In this paper we compute the gonality and the dimension of the Brill-Noether loci $W^1_d(C)$ for curves in a non primitive linear system of a simple abelian surface, adapting vector bundles techniques à la Lazarsfeld originally introduced with $K3$ surfaces. As a corollary, we obtain general Green's conjecture for curves on abelian surfaces.