论文标题
部分可观测时空混沌系统的无模型预测
Two-Dimensional Quantum Material Identification via Self-Attention and Soft-labeling in Deep Learning
论文作者
论文摘要
在量子机场中,在硅芯片中检测二维(2D)材料是最关键的问题之一。实例细分可以视为解决此问题的潜在方法。但是,与其他深度学习方法类似,实例细分需要大规模的培训数据集和高质量注释,以实现相当大的性能。实际上,准备培训数据集是一个挑战,因为注释者必须处理大型图像,例如2K分辨率,并且在此问题中进行了极度密集的对象。在这项工作中,我们提出了一种新的方法,可以解决2D量子材料识别中缺少注释的问题。我们提出了一种新机制,用于自动检测假阴性对象和基于注意力的损失策略,以减少这些对象的负面影响,从而导致整体损失函数。我们在2D材料检测数据集上进行了实验,实验表明我们的方法的表现优于先前的工作。
In quantum machine field, detecting two-dimensional (2D) materials in Silicon chips is one of the most critical problems. Instance segmentation can be considered as a potential approach to solve this problem. However, similar to other deep learning methods, the instance segmentation requires a large scale training dataset and high quality annotation in order to achieve a considerable performance. In practice, preparing the training dataset is a challenge since annotators have to deal with a large image, e.g 2K resolution, and extremely dense objects in this problem. In this work, we present a novel method to tackle the problem of missing annotation in instance segmentation in 2D quantum material identification. We propose a new mechanism for automatically detecting false negative objects and an attention based loss strategy to reduce the negative impact of these objects contributing to the overall loss function. We experiment on the 2D material detection datasets, and the experiments show our method outperforms previous works.