论文标题

基于模板的图形神经网络具有最佳的传输距离

Template based Graph Neural Network with Optimal Transport Distances

论文作者

Vincent-Cuaz, Cédric, Flamary, Rémi, Corneli, Marco, Vayer, Titouan, Courty, Nicolas

论文摘要

当前的图形神经网络(GNN)体系结构通常依赖于两个重要组成部分:通过消息传递嵌入的节点特征,并以一种专门的合并形式聚集。在这两个步骤中隐含地考虑了结构(或拓扑)信息。我们在这项工作中提出了一种新颖的观点,该观点将距离与图表表示核心的某些可学习的图形模板置于距离。该距离嵌入得益于最佳的传输距离:Fused Gromov-Wasserstein(FGW)距离,该距离通过解决软图匹配问题来同时编码特征和结构差异。我们假设FGW距离的向量与一组模板图具有强大的歧视功率,然后将其馈送到非线性分类器中以进行最终预测。距离嵌入可以看作是新层,并且可以利用现有消息传递技术来促进明智的特征表示。有趣的是,在我们的工作中,还通过区分这一层以端到端的方式学习了最佳的模板图集。在描述了相应的学习过程之后,我们从经验上验证了我们对几种合成和现实生活图分类数据集的主张,在该数据集中,我们的方法具有竞争力或超过内核和GNN的最新方法。我们通过消融研究和对参数的敏感性分析来完成实验。

Current Graph Neural Networks (GNN) architectures generally rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling. The structural (or topological) information is implicitly taken into account in these two steps. We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation. This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance, which encodes simultaneously feature and structure dissimilarities by solving a soft graph-matching problem. We postulate that the vector of FGW distances to a set of template graphs has a strong discriminative power, which is then fed to a non-linear classifier for final predictions. Distance embedding can be seen as a new layer, and can leverage on existing message passing techniques to promote sensible feature representations. Interestingly enough, in our work the optimal set of template graphs is also learnt in an end-to-end fashion by differentiating through this layer. After describing the corresponding learning procedure, we empirically validate our claim on several synthetic and real life graph classification datasets, where our method is competitive or surpasses kernel and GNN state-of-the-art approaches. We complete our experiments by an ablation study and a sensitivity analysis to parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源