论文标题
点隙拓扑阶段的散装对应关系
Bulk-boundary correspondence in point-gap topological phases
论文作者
论文摘要
非热系统系统的一个惊人特征是存在两种不同类型的拓扑结构。一个概括了赫米尔式拓扑阶段,另一个概括了非铁质体系的固有,它们分别称为线隙拓扑结构和点间隙拓扑。尽管庞大的对应关系是前一个拓扑的基本原则,但其在后者中的作用尚不清楚。这封信在非省系统中的点间隙拓扑中建立了庞大的对应关系。在揭示了在开放边界条件下对点间隙拓扑的需求之后,我们澄清说,在开放边界条件下的批量点间隙拓扑可能与周期性边界条件下的拓扑不同。根据真实的空间拓扑不变性和$ k $ - 理论,我们通过对称性对开放边界点间隙拓扑进行了完整的分类,并表明非平凡的开放边界拓扑会导致稳健和外来的表面状态。
A striking feature of non-Hermitian systems is the presence of two different types of topology. One generalizes Hermitian topological phases, and the other is intrinsic to non-Hermitian systems, which are called line-gap topology and point-gap topology, respectively. Whereas the bulk-boundary correspondence is a fundamental principle in the former topology, its role in the latter has not been clear yet. This Letter establishes the bulk-boundary correspondence in the point-gap topology in non-Hermitian systems. After revealing the requirement for point-gap topology in the open boundary conditions, we clarify that the bulk point-gap topology in open boundary conditions can be different from that in periodic boundary conditions. On the basis of real space topological invariants and the $K$-theory, we give a complete classification of the open boundary point-gap topology with symmetry and show that the nontrivial open boundary topology results in robust and exotic surface states.