论文标题
比较精神状态解码分析中的解释方法与深度学习模型
Comparing interpretation methods in mental state decoding analyses with deep learning models
论文作者
论文摘要
深度学习(DL)模型在精神状态解码中发现了越来越多的应用,研究人员试图通过识别这些活动可以准确识别(即解码)这些状态的精神状态(例如,感知恐惧或欢乐)和大脑活动之间的映射(例如,感知恐惧或喜悦)。一旦对DL模型进行了培训以准确地解码一组心理状态,神经影像学的研究人员通常会利用可解释的人工智能研究中的解释方法来了解该模型在心理状态和大脑活动之间的学到的映射。在这里,我们比较了三个功能磁共振成像(fMRI)数据集的精神状态解码分析中突出解释方法的解释性能。我们的发现表明,在精神状态解码中解释的两个关键特征之间是一个梯度,即其生物学的合理性和忠诚:具有很高解释忠诚的解释方法,忠实忠诚的解释方法很好地捕捉了模型的决策过程,通常提供的解释在生物学上比对具有解释信仰的解释方法的解释方法不那么合理。基于这一发现,我们为在心理状态解码中应用解释方法提供了具体建议。
Deep learning (DL) models find increasing application in mental state decoding, where researchers seek to understand the mapping between mental states (e.g., perceiving fear or joy) and brain activity by identifying those brain regions (and networks) whose activity allows to accurately identify (i.e., decode) these states. Once a DL model has been trained to accurately decode a set of mental states, neuroimaging researchers often make use of interpretation methods from explainable artificial intelligence research to understand the model's learned mappings between mental states and brain activity. Here, we compare the explanation performance of prominent interpretation methods in a mental state decoding analysis of three functional Magnetic Resonance Imaging (fMRI) datasets. Our findings demonstrate a gradient between two key characteristics of an explanation in mental state decoding, namely, its biological plausibility and faithfulness: interpretation methods with high explanation faithfulness, which capture the model's decision process well, generally provide explanations that are biologically less plausible than the explanations of interpretation methods with less explanation faithfulness. Based on this finding, we provide specific recommendations for the application of interpretation methods in mental state decoding.