论文标题

表面组的规范表示

Canonical representations of surface groups

论文作者

Landesman, Aaron, Litt, Daniel

论文摘要

令$σ_{g,n} $为带有$ n $ dumctures的属$ g $的定向表面。我们通过Hodge理论和算术技术研究$σ_{G,N} $的映射类组的动作。我们表明,如果$$ρ:π_1(σ_{g,n})\ to gl_r(\ mathbb {c})$$是一种表示,其共轭类在映射类组下具有有限的轨道,而$ r <\ sqrt {g+1} $,则是$ρ$,然后$ρ$有限的图像。这回答了Junho Peter Whang和Mark Kisin的问题。我们将方法应用于Putman-Wieland的猜想,Fontaine-Mazur猜想以及Esnault-Kerz的问题。 这些证据依赖于非亚伯式霍奇理论,我们先前关于异词性变形的准确性的工作以及Esnault-Groechenig和Klevdal-Patrikis在Simpson在同胞上刚性刚性本地系统上的完整性猜想的最新工作。

Let $Σ_{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We study actions of the mapping class group of $Σ_{g,n}$ via Hodge-theoretic and arithmetic techniques. We show that if $$ρ: π_1(Σ_{g,n})\to GL_r(\mathbb{C})$$ is a representation whose conjugacy class has finite orbit under the mapping class group, and $r<\sqrt{g+1}$, then $ρ$ has finite image. This answers questions of Junho Peter Whang and Mark Kisin. We give applications of our methods to the Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a question of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our earlier work on semistability of isomonodromic deformations, and recent work of Esnault-Groechenig and Klevdal-Patrikis on Simpson's integrality conjecture for cohomologically rigid local systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源