论文标题
在规范集合中,在一体降低密度基质功能理论中,用于非相互作用集合的有效的骨气和费米子凹痕算法
Efficient Bosonic and Fermionic Sinkhorn Algorithms for Non-Interacting Ensembles in One-body Reduced Density Matrix Functional Theory in the Canonical Ensemble
论文作者
论文摘要
我们在规范的集合中引入1-rdmft,然后通过非相互作用的合奏来近似相互作用的合奏,该集合与温度无关,从而使熵最大化。衍生并使用玻感和费米子凹痕算法来颠倒天然轨道占用数量(NOONS)与非相互作用合奏的有效轨道能量之间的关系。玻色粒和费米子凹凸算法都表现出很好的表现,可以很好地繁殖模拟分布的正午,而H $ _2 $ O和H $ _2 $的地面正午则表现出色。对于h $ _2 $的情况,随着键长的变化,随着几个波函数子空间内的相互作用能量的不相互作用熵和与相互作用能量的非相互作用近似。这为相互作用能量的近似值提供了几个新的起点,也为零温度。突出显示了与熵限制的多界数最佳运输(MMOT)的连接,这对于将来的研究可能很有趣。
We introduce 1-RDMFT in the canonical ensemble and then proceed to approximate the interacting ensemble by a non-interacting ensemble that maximizes the entropy, independently of temperature. Bosonic and Fermionic Sinkhorn algorithms are derived and used to invert the relationship between the Natural Orbital Occupation Numbers (NOONs) and the effective orbital energies of the non-interacting ensemble. Both the Bosonic and Fermionic Sinkhorn algorithms are shown to perform well in reproducing the NOONs of simulated distributions and the ground-state NOONs of H$_2$O and H$_2$. In the case of H$_2$ we also study the resulting non-interacting entropy and non-interacting approximation to the interaction energy within several wavefunction subspaces as the bond length varies. This provides several new starting points for approximations of the interaction energy, also at zero-temperature. Connections to entropically-regularized Multi-Marginal Optimal Transport (MMOT) are highlighted that may prove interesting for future research.