论文标题
通过半自动分化的量子最佳控制
Quantum Optimal Control via Semi-Automatic Differentiation
论文作者
论文摘要
我们开发了一个“半自动分化”的框架,该框架结合了现有的基于梯度的量子最佳控制方法和自动分化方法。该方法允许实际上优化任何可计算功能,并在两个开源朱莉娅软件包(grape.jl和krotov.jl)中实现,这是QuantumControl.jl Framework的一部分。我们的方法基于以传播状态,与目标状态或量子门的重叠为基础,正式重写优化功能。然后,链条规则的分析应用允许在计算梯度时将时间传播和功能的评估分开。可以通过改进的葡萄方案以极大的效率评估前者。通过自动分化对后者进行评估,但与时间传播相比,复杂性大大降低。因此,我们的方法消除了通常与自动分化相关的高度记忆和运行时开销,并通过使非分析功能直接优化量子信息和量子计量学,尤其是在开放量子系统中,从而促进了量子控制的进一步进步。我们说明并基准使用半自动分化来优化通过共享传输线耦合的超导量子柜上完美纠缠的量子门的优化。这包括非分析门并发的第一个直接优化。
We develop a framework of "semi-automatic differentiation" that combines existing gradient-based methods of quantum optimal control with automatic differentiation. The approach allows to optimize practically any computable functional and is implemented in two open source Julia packages, GRAPE.jl and Krotov.jl, part of the QuantumControl.jl framework. Our method is based on formally rewriting the optimization functional in terms of propagated states, overlaps with target states, or quantum gates. An analytical application of the chain rule then allows to separate the time propagation and the evaluation of the functional when calculating the gradient. The former can be evaluated with great efficiency via a modified GRAPE scheme. The latter is evaluated with automatic differentiation, but with a profoundly reduced complexity compared to the time propagation. Thus, our approach eliminates the prohibitive memory and runtime overhead normally associated with automatic differentiation and facilitates further advancement in quantum control by enabling the direct optimization of non-analytic functionals for quantum information and quantum metrology, especially in open quantum systems. We illustrate and benchmark the use of semi-automatic differentiation for the optimization of perfectly entangling quantum gates on superconducting qubits coupled via a shared transmission line. This includes the first direct optimization of the non-analytic gate concurrence.