论文标题
带有Newman-Penrose标量$ψ_4$的引力波参数推断
Gravitational-wave parameter inference with the Newman-Penrose scalar $ψ_4$
论文作者
论文摘要
重力波信号的检测和参数推断\ ncor {来自紧凑型合并}依赖于传入的检测器菌株数据$ d(t)$的比较与重力波菌株$ h(t)$的波形模板,最终依赖于爱因斯坦方程式通过数字相关性仿真的分辨率。但是,这些通常输出的数量称为纽曼 - 铅量表$ψ_4(t)$,在邦迪量规下,该量与重力波菌株相关,$ψ_4(t)= \ mathrm {d}^2H(t)^2H(t) / \ mathrm {d} t^2 $。因此,获得应变模板涉及一个集成过程,该过程引入了需要以手动方式处理的伪像。通过对检测器数据进行二阶有限差异并推断相应的背景噪声分布,我们开发了一个框架,使用$ψ_4(t)$模板直接执行引力波数据分析。我们首先证明了这种形式主义,以及通过在高级Ligo噪声注入的Proca恒星的数值模拟信号中恢复了数值模拟信号,并在应变模板中的整合伪像的影响。接下来,我们在Proca-Star合并的假设下重新分析了事件GW190521,获得了与参考文献[1]中的结果相等的结果,我们使用了经典的应变框架。但是,如果GW190521次数大四倍,我们发现集成错误将对我们的分析产生重大影响。最后,我们表明,我们的框架在解释高质量GW触发S200114F的解释中固定了明显的偏见。我们消除了从数值相对性模拟中获取应变波形的需求,以避免相关的系统错误。
Detection and parameter inference of gravitational-wave signals \ncor{from compact mergers} rely on the comparison of the incoming detector strain data $d(t)$ to waveform templates for the gravitational-wave strain $h(t)$ that ultimately rely on the resolution of Einstein's equations via numerical relativity simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar $ψ_4(t)$ which, under the Bondi gauge, is related to the gravitational-wave strain by $ψ_4(t)=\mathrm{d}^2h(t) / \mathrm{d}t^2$. Therefore, obtaining strain templates involves an integration process that introduces artefacts that need to be treated in a rather manual way. By taking second-order finite differences on the detector data and inferring the corresponding background noise distribution, we develop a framework to perform gravitational-wave data analysis directly using $ψ_4(t)$ templates. We first demonstrate this formalism, and the impact of integration artefacts in strain templates, through the recovery of numerically simulated signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we re-analyse the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to those in Ref.[1], where we used the classical strain framework. We find, however, that integration errors would strongly impact our analysis if GW190521 was four times louder. Finally, we show that our framework fixes significant biases in the interpretation of the high-mass GW trigger S200114f arising from the usage of strain templates. We remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the associated systematic errors.