论文标题

匹配相关随机图的恢复阈值

Matching recovery threshold for correlated random graphs

论文作者

Ding, Jian, Du, Hang

论文摘要

对于两个相关图,它们是从一个共同的erdős-rényi图$ \ mathbf {g}(n,p)$中独立子采样的,我们希望从这两个图形\ emph {无标签}的观察中恢复其\ emph {littent} pertex。当$ p = n^{ - α+o(1)} $对于$α\ in(0,1] $中时,我们为是否可以正确匹配正面的正面分数,建立了一个尖锐的信息理论理论阈值。我们的结果在WU,XU和YU的最新工作中持续不断的因素。

For two correlated graphs which are independently sub-sampled from a common Erdős-Rényi graph $\mathbf{G}(n, p)$, we wish to recover their \emph{latent} vertex matching from the observation of these two graphs \emph{without labels}. When $p = n^{-α+o(1)}$ for $α\in (0, 1]$, we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源