论文标题

基于多个数据增强的一般多个培训深度神经网络的框架

A General Multiple Data Augmentation Based Framework for Training Deep Neural Networks

论文作者

Hu, Binyan, Sun, Yu, Qin, A. K.

论文摘要

深度神经网络(DNNS)通常依靠大量标记的数据进行培训,这在许多应用中是无法访问的。数据增强(DA)通过创建可用数据的新标记数据来解决数据稀缺。不同的DA方法具有不同的机制,因此使用其生成的标记数据进行DNN训练可能有助于改善DNN的概括在不同程度上。组合多种DA方法,即用于DNN训练的多DA方法,提供了一种提高概括的方法。在现有的基于多DA的DNN培训方法中,依靠知识蒸馏(KD)的人受到了极大的关注。他们利用知识转移来利用由多种DA方法创建的标记数据集,而不是直接将它们合并用于培训DNN。但是,现有的基于KD的方法只能利用某些类型的DA方法,无法利用任意DA方法的优势。我们提出了一个基于多DA的一般DNN培训框架,能够使用任意DA方法。为了训练DNN,我们的框架将DNN后期的一定部分复制成多个副本,从而导致多个DNN在其以前的部分中具有共享的块和后者的独立块。这些DNN中的每一个都与唯一的DA和新设计的损失相关联,该损失允许以在线和自适应方式从所有DA方法和所有DNN产生的数据中进行全面学习。总体损失,即每个DNN损失的总和,用于训练DNN。最终,选择具有最佳验证性能的DNN进行推断。我们通过使用三种不同的DA方法来实施提出的框架,并将其应用于培训代表性DNN。对图像分类的流行基准的实验证明了我们方法比现有的单个单DA和多DA训练方法的优越性。

Deep neural networks (DNNs) often rely on massive labelled data for training, which is inaccessible in many applications. Data augmentation (DA) tackles data scarcity by creating new labelled data from available ones. Different DA methods have different mechanisms and therefore using their generated labelled data for DNN training may help improving DNN's generalisation to different degrees. Combining multiple DA methods, namely multi-DA, for DNN training, provides a way to boost generalisation. Among existing multi-DA based DNN training methods, those relying on knowledge distillation (KD) have received great attention. They leverage knowledge transfer to utilise the labelled data sets created by multiple DA methods instead of directly combining them for training DNNs. However, existing KD-based methods can only utilise certain types of DA methods, incapable of utilising the advantages of arbitrary DA methods. We propose a general multi-DA based DNN training framework capable to use arbitrary DA methods. To train a DNN, our framework replicates a certain portion in the latter part of the DNN into multiple copies, leading to multiple DNNs with shared blocks in their former parts and independent blocks in their latter parts. Each of these DNNs is associated with a unique DA and a newly devised loss that allows comprehensively learning from the data generated by all DA methods and the outputs from all DNNs in an online and adaptive way. The overall loss, i.e., the sum of each DNN's loss, is used for training the DNN. Eventually, one of the DNNs with the best validation performance is chosen for inference. We implement the proposed framework by using three distinct DA methods and apply it for training representative DNNs. Experiments on the popular benchmarks of image classification demonstrate the superiority of our method to several existing single-DA and multi-DA based training methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源