论文标题

尖峰神经元网络的时间支持向量

Temporal support vectors for spiking neuronal networks

论文作者

Rubin, Ran, Sompolinsky, Haim

论文摘要

当神经电路学会执行任务时,通常情况下,有许多与任务一致的突触连接。但是,只有少数可能的解决方案对输入中的噪声具有鲁棒性,并且能够将其任务的性能推广到新的输入。找到这样的良好解决方案是学习系统,尤其是神经元电路的重要目标。对于使用静态输入和输出运行的系统,该问题的众所周知的方法是较大的保证金方法,例如支持向量机(SVM)。通过最大化数据向量与决策面的距离,这些解决方案具有提高噪声和增强概括能力的鲁棒性。此外,内核方法的使用使SVM可以执行需要非线性决策表面的分类任务。但是,对于具有基于事件的输出的动态系统,例如尖峰神经网络和其他连续的时间阈值交叉系统,由于其输入和输出的强度时间相关性,因此该最佳标准不适用。我们介绍了静态SVM的新型扩展 - 时间支持向量机(T -SVM)。 T -SVM找到了一种最大化新构建体的解决方案 - 动态边缘。我们表明,T-SVM及其内核扩展在尖峰神经元中产生了稳健的突触矢量,并能够学习需要非线性空间集成突触输入的任务。我们将T-SVM与非线性内核一起提出,作为非线性和神经元树突树的广泛形态的计算作用的新模型。

When neural circuits learn to perform a task, it is often the case that there are many sets of synaptic connections that are consistent with the task. However, only a small number of possible solutions are robust to noise in the input and are capable of generalizing their performance of the task to new inputs. Finding such good solutions is an important goal of learning systems in general and neuronal circuits in particular. For systems operating with static inputs and outputs, a well known approach to the problem is the large margin methods such as Support Vector Machines (SVM). By maximizing the distance of the data vectors from the decision surface, these solutions enjoy increased robustness to noise and enhanced generalization abilities. Furthermore, the use of the kernel method enables SVMs to perform classification tasks that require nonlinear decision surfaces. However, for dynamical systems with event based outputs, such as spiking neural networks and other continuous time threshold crossing systems, this optimality criterion is inapplicable due to the strong temporal correlations in their input and output. We introduce a novel extension of the static SVMs - The Temporal Support Vector Machine (T-SVM). The T-SVM finds a solution that maximizes a new construct - the dynamical margin. We show that T-SVM and its kernel extensions generate robust synaptic weight vectors in spiking neurons and enable their learning of tasks that require nonlinear spatial integration of synaptic inputs. We propose T-SVM with nonlinear kernels as a new model of the computational role of the nonlinearities and extensive morphologies of neuronal dendritic trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源