论文标题
特征功能最大值和球形手段
Eigenfunction maxima and spherical means
论文作者
论文摘要
Laplacian的本征函数是从分析数理论到几何分析领域的中心对象。我们证明,hörmander$ l^2 $ - $ l^{\ infty} $估计值等于对一类歧管的小测量球的限制估计值。
The eigenfunctions of the Laplacian are a central object from the realms of analytic number theory to geometric analysis. We prove that Hörmander $L^2$-$L^{\infty}$ estimates are equivalent to restriction estimates to small geodesic spheres for a certain class of manifolds.