论文标题
KERR和4-D EINSTEIN-GAUSS-BONNET重力的Bondi-Hoyle积聚流中的渐近速度的研究
Study of Asymptotic Velocity in the Bondi-Hoyle Accretion Flows in the Domain of Kerr and 4-D Einstein-Gauss-Bonnet Gravities
论文作者
论文摘要
了解所需物质的物理结构非常接近类星体中的黑洞和活跃的银河核(AGNS)是限制其中心发生活动的重要里程碑。在本文中,我们从数值上研究了渐近速度对围绕Kerr和Einstein-Gauss-Bonnet(EGB)(EGB)迅速旋转黑色孔的物理结构的影响。在计算域上游区域的黑洞中,考虑到邦迪 - 霍伊尔的积聚。电击锥自然在两个黑洞周围的流动的下游部分产生。发现锥体的结构和应计的物质的数量取决于渐近速度$ v _ {\ infty} $(马赫数)和重力类型(KERR或EGB)。超音速区域中流入物质的马赫数增加会导致冲击开头,而积聚率越来越小,因为迅速下降的气体向黑洞降低。 EGB重力导致冲击锥的冲击开头增加,而质量吸积率$ \ dot {m} $在EGB重力中使用高斯 - 骨网(GB)耦合常数$α$降低。还可以证实,EGB重力中的积聚率和阻力会发生显着改变。我们的数值仿真结果可用于确定观察到的$ x- $射线中积聚磁盘和黑洞的累积机制和物理性能,例如NGC $ 1313 $ $ x-1 $和$ 1313 $ x-2 $和Maxi $ $ j1803-298 $。
Understanding the physical structures of the accreated matter very close to the black hole in quasars and active galactic nucleus (AGNs) is an important milestone to constrain the activities occurring in their centers. In this paper, we numerically investigate the effects of the asymptotic velocities on the physical structures of the accretion disk around the Kerr and Einstein-Gauss-Bonnet (EGB) rapidly rotating black holes. The Bondi-Hoyle accretion is considered with a falling gas towards the black hole in upstream region of the computational domain. The shock cones are naturally produced in the downstream part of the flow around both black holes. It is found that the structure of the cones and the amount of the accreated matter depend on asymptotic velocity $V_{\infty}$ (Mach number) and the types of the gravities (Kerr or EGB). Increasing the Mach number of the inflowing matter in the supersonic region causes the shock opening angle and accretion rates getting smaller because of the rapidly falling gas towards the black hole. The EGB gravity leads to an increase in the shock opening angle of the shock cones while the mass accretion rates $\dot{M}$ are decreasing in EGB gravity with a Gauss-Bonnet (GB) coupling constant $α$. It is also confirmed that accretion rates and drag forces are significantly altered in the EGB gravity. Our numerical simulation results could be used to identify the accreation mechanism and physical properties of the accretion disk and black hole in the observed $X-$ rays such as NGC $1313$ $X-1$ and $1313$ $X-2$ and MAXI $J1803-298$.