论文标题

新的半结构代数多族法方法

A New Semi-Structured Algebraic Multigrid Method

论文作者

Magri, Victor A. Paludetto, Falgout, Robert D., Yang, Ulrike M.

论文摘要

Multigrid方法非常适合大型平行计算机架构,因为它们在数学上是最佳的,并且具有出色的并行化属性。由于当前的体系结构趋势有利于定期的计算模式来实现高性能,因此表达结构的能力变得越来越重要。 HYPRE软件库通过概念上的接口提供高性能的Multigrid预处理和求解器,包括半结构化接口,该接口主要用模板和逻辑结构化的网格来描述矩阵。本文介绍了一种新的半结构化代数多式(SSAMG)方法。对于一组半结构化问题,评估了该方法的CPU实现的数值收敛性和性能。 SSAMG的设置时间明显优于Hypre的非结构化AMG求解器和可比的收敛。此外,新方法比Hypre的结构化求解器能够解决更复杂的问题。

Multigrid methods are well suited to large massively parallel computer architectures because they are mathematically optimal and display excellent parallelization properties. Since current architecture trends are favoring regular compute patterns to achieve high performance, the ability to express structure has become much more important. The hypre software library provides high-performance multigrid preconditioners and solvers through conceptual interfaces, including a semi-structured interface that describes matrices primarily in terms of stencils and logically structured grids. This paper presents a new semi-structured algebraic multigrid (SSAMG) method built on this interface. The numerical convergence and performance of a CPU implementation of this method are evaluated for a set of semi-structured problems. SSAMG achieves significantly better setup times than hypre's unstructured AMG solvers and comparable convergence. In addition, the new method is capable of solving more complex problems than hypre's structured solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源