论文标题
网络数字双胞胎:背景,启用技术和机会
Network Digital Twin: Context, Enabling Technologies and Opportunities
论文作者
论文摘要
新兴网络应用程序的扩散(例如,伸缩,元管理)正在增加管理现代通信网络的困难。这些应用程序需要严格的网络要求(例如,超低确定性延迟),这会阻碍网络运营商有效地管理其资源。在本文中,我们介绍了网络数字双胞胎(NDT),这是经典网络建模工具的翻新概念,其目标是构建可以实时运行的准确数据驱动网络模型。我们描述了NDT的一般体系结构,并认为现代机器学习(ML)技术可以构建其一些核心组成部分。然后,我们提出了一个案例研究,该案例研究利用基于ML的NDT进行网络性能评估,并将其应用于QoS感知用例中的路由优化。最后,我们描述了一些关键的开放挑战和研究机会,尚未探索以实现现实世界网络中NDT的有效部署。
The proliferation of emergent network applications (e.g., telesurgery, metaverse) is increasing the difficulty of managing modern communication networks. These applications entail stringent network requirements (e.g., ultra-low deterministic latency), which hinders network operators to manage their resources efficiently. In this article, we introduce the network digital twin (NDT), a renovated concept of classical network modeling tools whose goal is to build accurate data-driven network models that can operate in real-time. We describe the general architecture of the NDT and argue that modern machine learning (ML) technologies enable building some of its core components. Then, we present a case study that leverages a ML-based NDT for network performance evaluation and apply it to routing optimization in a QoS-aware use case. Lastly, we describe some key open challenges and research opportunities yet to be explored to achieve effective deployment of NDTs in real-world networks.