论文标题
使用标准化流量的多元概率预测对日内电价的预测
Multivariate Probabilistic Forecasting of Intraday Electricity Prices using Normalizing Flows
论文作者
论文摘要
电力在各个市场上以不同的时间范围和法规进行交易。由于可再生能源的渗透率较高,短期盘中交易变得越来越重要。在德国,盘中电价通常会以独特的小时模式左右的欧洲电力交易所(EPEX)现货市场的日常价格波动。这项工作提出了一种概率的建模方法,该方法对日前合同的盘中价格差异进行了建模。该模型通过将每天的每日价格间隔的四个15分钟间隔视为四维的关节概率分布,从而捕获了新兴的小时模式。使用归一化流量,即结合条件多元密度估计和概率回归的深层生成模型,从而学习了最终的多元价格差异分布。此外,这项工作讨论了基于文献见解和使用可解释的人工智能(XAI)的影响分析的不同外部影响因素的影响。将归一化流程与使用高斯copula和高斯回归模型的历史数据和概率预测的知情选择进行了比较。在不同的模型中,归一化流以最高的精度标识趋势,并且预测间隔最窄。 XAI分析和经验实验都凸显了价格差异实现的直接历史和日期价格的增长对价格差异的影响最大。
Electricity is traded on various markets with different time horizons and regulations. Short-term intraday trading becomes increasingly important due to the higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the European Power EXchange (EPEX) spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15 min intervals in each day-ahead price interval as a four-dimensional joint probability distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. Furthermore, this work discusses the influence of different external impact factors based on literature insights and impact analysis using explainable artificial intelligence (XAI). The normalizing flow is compared to an informed selection of historical data and probabilistic forecasts using a Gaussian copula and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends with the highest accuracy and has the narrowest prediction intervals. Both the XAI analysis and the empirical experiments highlight that the immediate history of the price difference realization and the increments of the day-ahead price have the most substantial impact on the price difference.