论文标题

生存分析的危险梯度罚款

Hazard Gradient Penalty for Survival Analysis

论文作者

Jung, Seungjae, Kim, Kyung-Min

论文摘要

生存分析出现在医学,经济学,工程和业务等各个领域。最近的研究表明,普通的微分方程(ODE)建模框架统一了许多现有的生存模型,而该框架是灵活且广泛适用的。但是,天真地将ODE框架应用于生存分析问题可能会建模严重变化的密度功能,这可能会使模型的性能恶化。尽管我们可以将L1或L2正则化器应用于ODE模型,但几乎不知道它们对ODE建模框架的影响。在本文中,我们提出危害梯度惩罚(HGP),以增强生存分析模型的性能。我们的方法通过将危险功能梯度相对于数据点的梯度进行正规化,对局部数据点施加了限制。我们的方法适用于包括ODE建模框架在内的任何生存分析模型,并且易于实现。从理论上讲,我们表明我们的方法与最小化数据点的密度函数和邻域点之间的KL差异有关。三个公共基准的实验结果表明,我们的方法表现优于其他正则化方法。

Survival analysis appears in various fields such as medicine, economics, engineering, and business. Recent studies showed that the Ordinary Differential Equation (ODE) modeling framework unifies many existing survival models while the framework is flexible and widely applicable. However, naively applying the ODE framework to survival analysis problems may model fiercely changing density function which may worsen the model's performance. Though we can apply L1 or L2 regularizers to the ODE model, their effect on the ODE modeling framework is barely known. In this paper, we propose hazard gradient penalty (HGP) to enhance the performance of a survival analysis model. Our method imposes constraints on local data points by regularizing the gradient of hazard function with respect to the data point. Our method applies to any survival analysis model including the ODE modeling framework and is easy to implement. We theoretically show that our method is related to minimizing the KL divergence between the density function at a data point and that of the neighborhood points. Experimental results on three public benchmarks show that our approach outperforms other regularization methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源