论文标题

随机螺旋链中的拓扑指数

Topological indices in Random Spiro Chains

论文作者

Sigarreta, Sayle, Sigarreta, Sayli, Cruz-Suarez, Hugo

论文摘要

在本文中,我们通过Martingale方法研究随机螺旋链中的拓扑指数。在其中获得了确切分布,期望值和方差的明确分析表达式。随着n到达无限,随机螺旋链拓扑指数的渐近正态性是通过Martingale Central Limit定理建立的。特别是,我们计算了Nirmala,Sombor,Randic和Zagreb指数,以进行随机螺旋链以及它们的比较分析。

In this paper, we study topological indices in random spiro chains via a martingale approach. In which their explicit analytical expressions of the exact distribution, expected value and variance are obtained. As n goes to infinity, the asymptotic normality of topological indices of a random spiro chain is established through the Martingale Central Limit Theorem. In particular, we compute the Nirmala, Sombor, Randic and Zagreb index for a random spiro chain along with their comparative analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源